A severely defective TATA-binding protein-TFIIB interaction does not preclude transcriptional activation in vivo.

نویسندگان

  • M Lee
  • K Struhl
چکیده

In yeast cells, mutations in the TATA-binding protein (TBP) that disrupt the interaction with the TATA element or with TFIIA can selectively impair the response to acidic activator proteins. We analyzed the transcriptional properties of TBP derivatives in which residues that directly interact with TFIIB were replaced by alanines. Surprisingly, a derivative with a 50-fold defect in TBP-TFIIB-TATA complex formation in vitro (E188A) supports viability and responds efficiently to activators in vivo. The E186A derivative, which displays a 100-fold defect in TBP-TFIIB-TATA complex formation, does not support viability, yet it does respond to activators. Conversely, the L189A mutation, which has the mildest effect on the interaction with TFIIB (10-fold), can abolish transcriptional activation and cell viability when combined with mutations on the DNA-binding surface. This "synthetic lethal" effect is not observed with E188A, suggesting that the previously described role of L189 in transcriptional activation may be related to its location on the DNA-binding surface and not to its interaction with TFIIB. Finally, when using TBP mutants defective on multiple interaction surfaces, we observed synthetic lethal effects between mutations on the TFIIA and TFIIB interfaces but found that mutations implicated in association with polymerase II and TFIIF did not have significant effects in vivo. Taken together, these results argue that, unlike the TBP-TATA and TBP-TFIIA interactions, the TBP-TFIIB interaction is not generally limiting for transcriptional activation in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new class of activation-defective TATA-binding protein mutants: evidence for two steps of transcriptional activation in vivo.

Using a genetic screen, we isolated four TATA-binding protein (TBP) mutants that are specifically defective in vivo for the response to acidic activators. In contrast to previously described activation-defective TBP mutants, these TBP derivatives are not specifically defective for interactions with TATA elements or TFIIA. Three of these derivatives interact normally with a TATA element, TFIIA, ...

متن کامل

The TBP-TFIIA interaction in the response to acidic activators in vivo.

A yeast TBP mutant (N2-1) is described here that is defective specifically in responding to acidic activators in vivo. N2-1 does not support activation by Gal4, Ace1, and Gcn4, but appears unaffected for constitutive transcription, repression by the Cyc8-Tup1 and Not complexes, and transcription by polymerase I (Pol) and Pol III. In vitro, N2-1 fails to interact with TFIIA, but it associates no...

متن کامل

Transcriptional activation by TFIIB mutants that are severely impaired in interaction with promoter DNA and acidic activation domains.

Biochemical experiments indicate that the general transcription factor IIB (TFIIB) can interact directly with acidic activation domains and that activators can stimulate transcription by increasing recruitment of TFIIB to promoters. For promoters at which recruitment of TFIIB to promoters is limiting in vivo, one would predict that transcriptional activity should be particularly sensitive to TF...

متن کامل

Promoter-specific activation defects by a novel yeast TBP mutant compromised for TFIIB interaction

TFIIB is an RNA polymerase II general transcription factor (GTF) that has also been implicated in the mechanism of action of certain promoter-specific activators (see, for examples, [1-11]). TFIIB enters the preinitiation complex (PIC) primarily through contact with the TATA box binding protein (TBP), an interaction mediated by three TBP residues [12-14]. To study the role of TFIIB in transcrip...

متن کامل

DA-complex assembly activity required for VP16C transcriptional activation.

One class of transcriptional activation domains stimulates the concerted binding of TFIIA and TFIID to promoter DNA. To test whether this DA-complex assembly activity contributes significantly to the overall mechanism of activation in vivo, we analyzed mutants of the 38-amino-acid residue VP16C activation subdomain from herpes simplex virus. An excellent correlation was observed between the in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 17 3  شماره 

صفحات  -

تاریخ انتشار 1997